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Abstract-Three-dimensional constitutive equations are developed for the time-dependent (tran
sient) creep behavior of metal-matrix composites reinforced by continuous elastic fibers. The com
posite model is developed in two steps: (i) one in which shear loads relative to the fibers are applied
and the response is matrix-dominated, and (ii) another in which the composite is subjected to
axisymmetric loads relative to the fibers and the response is fiber-dominated. The predictions of the
model are compared with the solutions of a number of 'unit cell' problems; periodic boundary
conditions, consistent with the requirements of homogenization theory, are imposed on the unit
cell, and the solutions are obtained by using the finite element method. A method for the numerical
integration of the developed constitutive equations is presented and the material model is
implemented in a general-purpose finite element program. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Metal-matrix composites reinforced by continuous fibers have attracted a lot of attention
recently, in view of their potential as high-temperature structural materials. Several one
dimensional models that can be used to predict the creep behavior of fiber-reinforced
composites under simple types of loading are already available in the literature; we mention
amongst these the work of Mileiko (1970), Kelly and Street (1972), McLean (1985,1988,
1989), Goto and McLean (1991a, b), and McMeeking (1993a, b). However, little progress
has been made in the development of three-dimensional constitutive equations for the
behavior of metal-matrix composites at high temperatures.

When both the matrix and the fibers are capable of creeping, the composite exhibits
steady-state creep. Three-dimensional constitutive equations for such composites have been
developed by Johnson (1977), and more recently by Aravas et al. (1995).

When the fibers do not creep, transient creep of the composite is observed (Weber et
al., 1993). When such a composite system is subjected to uniaxial tension in the fiber
direction, the creeping matrix relaxes, and load is transferred continuously from the matrix
to the fibers. Therefore, when the applied macroscopic stress is constant, the axial strain
rate decreases with time; eventually, when the matrix stress is completely relaxed, all of the
applied load is carried by the fibers and the strain approaches a constant value limited by
the elastic deformation of the fibers. McLean (1985, 1988, 1989) developed a model for the
response of such composites under uniaxial tension.

In this paper, we develop three-dimensional constitutive equations for the time-depen
dent (transient) creep of metal-matrix composites reinforced by continuous elastic fibers.
The macroscopic response of the composite is assumed to be transversely isotropic, with
the axis of transverse isotropy defined by the direction of the fibers. The composite model
is developed in two steps: (i) one in which shear loads relative to the fibers are applied and
the response is matrix dominated, and (ii) another in which the composite is subjected to
axisymmetric loads relative to the fibers and the response is fiber dominated. The predictions
of the model are compared with the solutions of a number of 'unit cell' problems; periodic
boundary conditions, consistent with the requirements of homogenization theory, are
imposed on the unit cell problems, and the solutions are obtained by using the finite element
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method. A method for the numerical integration of the developed constitutive equations is
presented. The 'linearization moduli' associated with the integration algorithm are
computed, and the proposed new constitutive model is implemented in a general-purpose
finite element program.

The effects of fiber failure on behavior of the composite are discussed in detail in Part
II of this paper, where a constitutive model that accounts for 'material damage' is developed.

Standard notation is used throughout. Boldface symbols denote tensors the order of
which is indicated by the context. All tensor components are written with respect to a fixed
Cartesian coordinate system, and the summation convention is used for repeated indices,
unless otherwise indicated. A superposed dot indicates the material time derivative, and a
superscript T the transpose of a matrix. Let a and b be vectors, A and B second-order
tensors, and C and D fourth-order tensors; the following products are used in the text:
(ab)ij = a;bj, (A· a); = A;pj, (a· A); = ajAji> (A· B);j = AikBkj, A: B = AijB,/, (oAj8B);jkl =

oAj8Bkh (AB)'jkl = AijBkh (C: A)ij = CijklAkh and (C: D)ijkl = CijrnnDrnnkl'

2. DESCRIPTION OF THE MATERIAL SYSTEM

We consider a metal-matrix composite reinforced by continuous aligned fibers. The
matrix is considered to exhibit power-law steady-state creep, plus elastic response, such
that the tensile strain rate is

(1)

where 8 and U are the uniaxial strain and stress, respectively, Ern is the Young's modulus,
and (B, n) are the creep constants of the matrix. The fibers behave elastically and the
uniaxial stress-strain relationship is

U
8=

E'r
(2)

where Eris the Young's modulus of the fibers. The corresponding three-dimensional version
of the above equation is

and

. C- 1 • +3 B n-I I f th t .8 = rn : (J 2: Ue (J or e rna nx,

8 = CT I : (J for the fibers,

(3)

(4)

where 8 and (J are the strain and stress tensors, Crn and Cf are the fourth-order tensors of
the elastic moduli for the matrix and the fibers, respectively, a prime denotes the deviatoric
part of a tensor, and Ue = (I.5u/ : (J1)1 12 is the von Mises equivalent stress.

It is a well known result that, when the macroscopic deformation of the composite is
uniform with 8 and (J being the corresponding uniform macroscopic fields, then the average
stresses and strains in the matrix and the fibers are such that

(5)

where the subscripts m andf refer to the matrix and the fibers, respectively, a caret indicates
volume average over the phase, and f is the volume fraction of the fibers.

In the following, we let the X3 coordinate axis coincide with the direction of the fibers,
so that the Xl and X2 axes are on the transverse plane. An arbitrary macroscopic stress (J
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Fig. 1. Representation of an arbitrary stress state.

can be written as

[a"
0"12 a,,] [,(a" - a,,) 0" 12 a,,] [iCa" +a,,) 0 o 1

~(0"22 -0"11) 0"23 + 0
I o .0" 12 0"22 0"23 = 0"12 2(0"11 +0"22)

0"13 0"23 0"13 0" 13 0"23 o 0 0 0"33

(6)

The first term on the right hand side of the above equation corresponds to shear loading
relative to the fibers, and the last term is the superposition of lateral pressure and uniaxial
loading. Therefore, it is always possible to choose the orientation of the XI and X 2 axes (say
X'I and x;) so that an arbitrary stress (1 can be represented by the superposition of the two
states shown in Fig. I. In terms of the components of the arbitrary stress state of eqn (6),
the quantities 0"", O"p, Cn and cp shown in Figs la and lb are given by

(7)

and are independent of the orientation of the XI- and x2-axes.
The behavior of the composite is expected to be substantially different under shear

(Fig. la) and axisymmetric (Fig. 1b) loading. In particular, the response to the shear loads
shown in Fig. 1a will be 'matrix dominated', and the composite is expected to experience
'steady-state' creep, i.e., the creep strain rate is constant under constant applied shear loads;
on the other hand, when constant axisymmetric loads are applied, the corresponding creep
strain rate will be time-dependent due to matrix relaxation and load transfer from the
matrix to the fibers (Weber et at. 1993). In the following two Sections 3 and 4, we analyze
the behavior of the composite under the two types of loading shown in Fig. 1, and the
results are then combined in the constitutive model presented in Section 5.

3. THE MATRIX DOMINATED BEHAVIOR FOR SHEAR LOADING

The creep response of the composite under the shear loading shown in Fig. la is
dominated by the matrix behavior. The elasticity of the matrix and the fibers are not
expected to have a significant influence on the steady-state creep characteristics of the
composite under shear. Therefore, for the rest of Section 3, we assume that the fibers are
rigid and that the matrix deforms by creep only, i.e., C;;; I = Cj I = 0 and Sf = O. Referring
to Fig. la, we assume that the only non-zero stress components are 0"31 = 0"1'3 = Cn cos ¢,
0"32' = 0"2'3 = Cn sin ¢, and 0"1'2' = O"n = cp , where the angle ¢ is as shown in Fig. lao

In the following, we discuss first a model developed by deBotton and Ponte Castafieda
(dB-PC) (1993) for fiber-reinforced nonlinear composites, and then develop a simple model
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based on statically admissible stress field and a set of 'unit cell' calculations with periodic
boundary conditions.

3.1. The model ofdeBotton and Ponte Castaneda
deBotton and Ponte Castaneda (1993) have recently presented a constitutive model

for nonlinear composite materials reinforced by continuous aligned fibers. The derivation
of the model is based on a variational principle that enables the expression of the effective
energy functions of nonlinear composites in terms of optimization problems. For the case
of rigid fibers and a power-law creeping matrix and with respect to the coordinate axes
(x;, x;, X3) shown in Fig. 1, their model can be written as

[i:] =~B(1-f)(1+f)-(n+I)/20'7-1[ ~
Tn COS ¢

o
Tn COS ¢]
Tn sin ¢ ,

o
(8)

where 0'; = 3(T~ +T;). For an arbitrary orientation of the XI and X2 coordinate axes on the
transverse plane, the above equations become

[

(0'11 -0'22)/2

[i:] = ~B(1-f)(1+f)-(n+I)'20'7-1 0'12

0' 13

(9)

(10)

According to this model, constant applied stresses cause constant strain rates (steady-state
creep). Also, the predicted response of the composite is identical under longitudinal (0'31 or
0'32) or transverse (0'12) shear.

An alternative Reuss-type of model is presented in the following Section 3.2 and
comparisons with unit cell calculations are presented in Section 3.3.

3.2. A simple Reuss model
We assume that the stress tensor in the matrix O'm is uniform and equal to the macro

scopic stress, i.e., Urn = u. The corresponding uniform strain rate in the matrix is

(11)

In view of eqn (5b), the macroscopic strain ratei: is now

(12)

or

(13)

with respect to the coordinate axes (X'I' x;, x3 ) shown in Fig. 1. When the orientation of
the XI and X2 coordinate axes on the transverse plane is arbitrary, the above equation for
the macroscopic strain rate can be written as
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[

(0"11 -0"22)/2

[i>] =~B(l-f)O"':-1 0"12

0"23

0" 12

(0"22 -0"11)/2 (14)

where

(15)

It is interesting to note that the form of eqn (14) is identical to that of (9), the only difference
being the multiplicative constant (l +1)-(11+1)/2 < 1 in (9).

3.3. Unit cell solutions
The predictions of the analytical models discussed in the previous subsections are

compared with the results of periodic homogenization theory (Sanchez-Palencia. 1980;
Bakhvalov and Panasenko, 1989). A number of 'unit cell' problems with periodic boundary
conditions, consistent with the requirements of homogenization theory, are solved by using
the finite element method. The distribution of the fibers is assumed to be periodic, with the
fibers arranged in a hexagonal array. A detailed description of the formulation of the unit
cell problems can be found in Aravas et al. (1993) and Cheng (1996) and will not be
repeated here.

The macroscopic applied loads are combinations of transverse and longitudinal shear.
Figure 2 shows the assumed hexagonal arrangement of the fibers in the matrix, and Fig. 3
shows the finite element mesh used in the two-dimensional calculations. The dark and white
regions in Fig. 3 represent the fibers and the matrix respectively. A similar mesh is used in
the three-dimensional calculations that involve longitudinal shear (Aravas et al.. 1993).
Calculations are carried out for several values of the matrix creep exponent n and for
different values of the fiber volume fraction f. The numerical solution is practically inde
pendent of the values of the elastic constants of the fibers and the matrix. It is found that
the results of the unit cell calculations agree very well with a constitutive equation of the

Y1

I

-CD
T
2a

1

o
--~- -0

T
'2h

1

,....f-----zJ3b -----.-11
Fig. 2. Hexagonal array of fibers and the corresponding unit cell.
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Fig. 3. Finite element mesh used in the unit cell calculations.

[

(0'11 - O'c2)/2 0'12 0'1,

[k] =~B(1-f);CO":-1 O'ic (O'cc~0'Id/2 O'cl

0'11 O'n 0

(16)

where X = x(n,f), and the orientation of the XI and X2 axes on the transverse plane is
arbitrary. Note that X = (1 +f) -(n+ 1)(2'1) in the dB-PC model, and X = I in the Reuss model
of Section 3.2.

It is noteworthy that the unit cell calculations predict that the response is identical
under longitudinal and transverse shear as well. The results of the finite element solutions
indicate that, for values of n and! in the range I ~ n ~ 10 and 0 ~ f ~ 0.70, the quantity
X-1 can be approximated by an equation of the form:

X I = I + a(n)f+b(n)F +c(n)f6,

where a(n) is given by

(17)

I (n+ I)C
a(n) = 4G(n) -n-

and

I ( n+ I )G(n) = - -~.-- ,
2 In+1

(18)

0.467 15.199
ben) = -- -0.248-0.009n, c(n) = ---~ + 1.132+0.248n. (19)

n n

For composite materials with a statistically isotropic (as opposed to period) micro
structure, Ponte Castaneda (1996) obtained the following exact result for the dilute limit
(small/) :

X-I = I +a(n)f (20)

For small values off, the interaction between neighboring fibers is very weak, and eqn (20)
is also valid for composites with a periodic microstructure. Note that the expression for X-I
in eqn (17) is consistent with the exact result (20) in the limit of smallf

For the case of transverse macroscopic shear loading (O'lc = T), the above model
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Fig. 4. Shear solution for f = 0.32 and 11 = 3.

". (')"_/_=3\"+I)/2(1-f)x" - ,
B,~ '0

(21 )

where y = 2812, and '0 is an arbitrary reference stress. Figure 4 shows the results of the unit
cell calculations together with those of eqns (17)-(21) for f= 0.32 and n = 3. The pre
dictions of the analytical model agree well with the results of the finite element solutions.

4. THE FIBER DOMINATED BEHAVIOR FOR AXISYMMETRIC LOADING

In the case of the axisymmetric loading shown in Fig. 1b, the elasticity of the fibers is
of major importance. In the following, we discuss first a simple model developed by McLean
(1985, 1988) for uniaxial tension in the direction of the fibers, and then develop a three
dimensional version of it for the case of the axisymmetric loading shown in Fig. lb.

4.1. McLean's model for uniaxial tension in the direction of thefibers
The macroscopic applied load is tensile in the direction of the fibers, i.e., 0'33 = 0'. Let

833 = 8 be the corresponding macroscopic axial strain component.
McLean assumes that the stresses take constant values in the fibers and the matrix and

that the only non-zero components are O'rB = O'r and 0'm33 = 0'm' He also assumes that the
corresponding uniform axial strain in the fibers and the matrix equals the macroscopic
axial strain 8. With these assumptions, eqn (5a) implies that

(22)

and the axial strain rate can be written as

(23)

Using the last two equations we can readily show that McLean model can be written in the
following form:

a-
t = - +B'(O'-et)"

E
(24)

where the 'back stress' Cl = fO'f is the part of the total axial stress carried by the fibers (see
eqn (22)), E = jEr+ (l-f)Em, and B' = BEm/[(l-f)"-IE]. The initial values of the strain
~8o) and the back stress (eto) at the start of the loading history (time t = 0-) are
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(25)

The first term on the right hand side of (24a) defines the elastic strain rate in the composite
(e''), and the second term defines the macroscopic creep strain rate e". Equation (24a) for
the composite has a form similar to that of the matrix (23b) or (I), where now Em is replaced
by E in the elastic part, and B and a by B' and a-ct., respectively, in the creep part of e.
The back stress a is a measure of the stress carried by the fibers and accounts for the
strengthening effects of the fibers; i.e., whereas the creep strain rate is proportional to a" in
the absence of fibers, eCI is proportional to (a - a)" when( # O.

For the case of a 'creep test' in which a constant stress a is applied in the direction of
the fibers, eqns (24) make it clear that the strain rate varies with time due to the evolution
of the back stress a (transient or non-steady-state creep). In this case, eqns (24) can be
integrated to give

and

{ (
G) [ (G ),,-1 Blalltl-l/(" II}

G(t)=Gc 1- I-t I+(n-I) I-G~-G-'- forn>l,

[ ( G) (B 1

a" t)lG(t) = Gc 1- I - G~ exp - -G
c

- for n = I,

a(t) = jEr£(t) ,

(26)

(27)

(28)

where GO = alE, and Gc = a/(jEr). In the uniaxial creep test, as the matrix creeps, the
corresponding stress am relaxes, load is transferred from the matrix to the fibers and, as a
consequence, the back stress a increases with time. The long time response of the system as
t --+ CXJ is such that

(29)

i.e., eventually the strain approaches the limiting value G" the matrix is completely unloaded
and the whole load is carried by the fibers. Figure 5 shows the variation of the normalized

0.8

0.6

0.4

0.2

o i = B'(ynt/Ec
o 100 200 300 400 500

Fig. 5. Uniaxial tension solution for £0/£' = 0.6 and n = 3.
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strain 1. with normalized time [for values of n = 3 and 8o/8e = 0.6, where
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8 ,'Y.
t = - = - and

8, (J

B' (In t
{=--.

8,
(30)

4.2. A three-dimensional version of the McLean model
We consider next the case in which the applied macroscopic load is axisymmetric of

the form shown in Fig. Ib, i.e., (JIT = (J2'2' = (Jp and (J33 = (In' Note that this macroscopic
stress state maintains its form for an arbitrary orientation of the X j - and xz-axes on the
transverse plane, i.e., it is always true that (J11 = (J22 = (Jp-

Assumptions similar to those of McLean are used for this type of loading as well; i.e.,
it is assumed that

I. the stresses take constant values in the fibers and the matrix, i.e,

o

o
~] and

(Jf

o

o
(31 )

where the transverse normal stresses are taken to be equal to the macroscopic load (Jp,

and
2. the corresponding axial strain in the fibers and the matrix is equal to the axial

macroscopic strain 833 = 8, i.e.,

(32)

In view of eqn (Sa), the axial components (Jj and (Jm are such that

(33)

Recalling eqn (5b) we write i; = fi;j+ (I - f)i;m, and using the constitutive eqns (3) and (4)
for the matrix and the fibers respectively we find

-Vm

-Vm

(34)

Our goal is to eliminate the 'local' stresses (Jm and (Jjfrom the above equation and arrive at
an expression for i; in terms of the macroscopic stresses (Jm (Jp and a back stress rJ.. This is
achieved as follows.

As before, we introduce the back stress rJ. = f(JI' and using (33) we write

(35)

Next, we use the strain continuity equation E;f33 = E;m33 together with the constitutive equa
tions for the fibers and the matrix and eqns (35) to determine IX in terms of am ap, (J", (Jp,

and rJ.:
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(36)

(37)

Finally, substituting eqns (35) into (34) and using the expression for 6:. we obtain the
following equation for the macroscopic strain rates:

1
t:II) [l/ET
~22 = -~T~ET
8 33 -VL/EL

where

-vTiET
l/ET

I (rIll - '!- ) JK:l
I-I -rIp l~r

(38)

and

(39)

(40)

(41 )

The initial value of the back stress eta is

(42)

The first term on the right hand side of (38) defines the elastic part Ii'" of the total strain
rate and the second term defines the macroscopic creep strain rate I;,r. In order to make
connection with eqn (16) for i"r in the case of shear loading, we note that the second term
on the right hand side of (38) can be also written as

and

:S ~],
o LS

rIll - et
where S = 1-f - (J,,, (43)

(44)

4.3. Unit cell solutions
The predictions of the model developed in the previous section are now compared with

unit-cell finite element calculations. Periodic boundary conditions, similar to those described
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Fig. 6. Uniaxial tension solution forf= 0.32,11 = 3. B = 4.125 x 10 11 MPa- n s '. and (J" = 500
MPa.

in Section 3.3, are imposed. The material properties used in the calculations are £! = 360
GPa, vr= 0.3,£", = 65 GPa, v'" = 0.3,n = 3,andB = 4.125x IO-UMPa-"s-'. The volume
fraction of the fibers is f = 0.32.

Figure 6 shows the results of the finite element calculations together with the predictions
of the model (38)-(42), when a constant axial macroscopic load (In = 500 MPa is applied.
The corresponding results for a constant axisymmetric transverse macroscopic load
(Jp = 100 MPa are shown in Fig. 7. The results of the unit cell calculations agree well with
the predictions of the analytical model.

5. A PROPOSED NEW MODEL

The results derived in Sections 3 and 4 for shear and axisymmetric loadings. respec
tively, are now combined and constitutive equations for general types of loading are
developed. Clearly, in view of the non-linearity of the problem, the equations developed for
shear and axisymmetric loadings can not be superposed. Instead, our results are combined in
such a way that the proposed general constitutive equations for i;" reduce to eqns (16) and
(43) when the applied loads are shear or axisymmetric, respectively.

The detailed description of the proposed model is presented in the following two sub
sections. The macroscopic response of the composite is transversely isotropic, and the unit
vector n in the direction of the fibers is used to define the axis of rotational symmetry. The
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model

o Time (h)
o 10 20 30 40 50

Fig. 7. Biaxial tension solution for f = 0.32. n = 3, B = 4.125 x 10-" MPa n s " and (5" = 100
MPa.

total macroscopic strain in the composite is written as the sum of the elastic and creep
parts:

Constitutive equations for 8" and i(' are presented in the following.

5.1. Elasticity
The elastic strain is written in terms of the stress tensor (1 as

8'" = cc-I : (1,

(45)

(46)

where ce is the fourth-order elasticity tensor for the homogenized transversely isotropic
composite. When the fibers are aligned with the X3 coordinate direction (i.e., n = e3), eqn
(46) can be written in matrix form as

(47)
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1JET -vTjET -vIIEI 0 0 0

-vTjET IjET -vLjEL 0 0 0

[e]-l
-vLjEL -vLjEL l/EL 0 0 0

0 0 0 l/GT 0 0

0 0 0 0 l/GL 0

0 0 0 0 0 l/GL

EL , ET , GL, VLand VT are the five independent elastic constants of the composite, and

(48)

The constants EL , ET, VL and VT are defined by eqns (37a), (39), and (40), and the shear
modulus GL is estimated as (Christensen, 1979, p. 84)

Gt(l +f)+Gm(l-f)
G - G

L - m Gr(l-f)+Gm(l +f)'

where Grand Gm are the shear moduli of the fibers and the matrix, respectively.

5.2. Creep
The general form of the constitutive equations during creep is

i;" = g(a-tx,s), oc = h(a-tx,u,s),

(49)

(50)

where tx is the back stress tensor, g and h are tensor-valued isotropic functions, and s is the
collection of material parameters, S = {Ef , Vf, Em, Vm, B, n,f}. In the present model, the back
stress tensor tx is assumed to be in the direction of the fibers, i.e, tx = ann; it should be
noted, however, that more complicated forms may be necessary when effects such as the
primary (transient) creep of the matrix must be accounted for.

In the following, we combine the results of Sections 3 and 4 and develop constitutive
equations for general types of loading. The proposed model is such that eqns (16) and (38)
are recovered as special cases, when the applied loads are shear or axisymmetric, respec
tively. With respect to the coordinate axes shown in Fig. 1 and for an arbitrary orientation
of the Xl-X2 axes on the transverse plane, we write the following equations for the creep
strain rate:

[

X(O'II - 0'22)/2+ K5
3 '

Wr
] = 2. B(1-f) L=-l XO'12

XO'13

(51 )

where L; = 52 + (XO's) 2
. For convenience, we repeat the definition of the quantities entering

the above equation: O'n = 0'33, ap = (all +O'n)j2,

(52)

(53)

and recall that x(nJ) is defined by eqns (17)-(19). The evolution of the back stress is given
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Fig. 8. Combination of axisymmetric and shear macroscopic loading for r = o.n. n = 3,
B = 4.125 x 10-1' MPa- n s-', and "II = "12 = 20 MPa, "]J = 500 MPa.

by

(54)

where EL and B' are defined by (37), and the initial value of (xo of the back stress is given
by eqn (42).

5.3. Unit cell solutions
The predictions of the proposed new model are compared with the results of finite

element calculations, in which a unit cell is subjected to a combination of axisymmetric and
shear macroscopic loading. The material constants mentioned in Section 4.3 are used in
the present calculations as well. Figure 8 shows the temporal variation or various strain
components for the case where constant macroscopic stresses O'lj = 20 MPa, 0'12 = 20 MPa,
and 0'33 = 500 MPa are applied to the unit cell. The results of the numerical calculations
agree well with the predictions of the analytical model.

6. FINITE ELEMENT IMPLEMENTATION OF THE CONSTITUTIVE MODEL

In this section, we discuss the implementation of the general form or the proposed
constitutive model in a finite element program. In a finite element environment, the solution
of the creep problem is developed incrementally and the constitutive equations are inte
grated numerically at the element Gauss points. In a displacement based finite element
formulation the solution is deformation driven. At a material point, the solution (Gil' 8,1' IXII )

at time til as well as the strain 8 11 + 1 at time til + I = til + ~t are supposed to be known and one
has to determine the solution (GII+I,IXII_I)'
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6.1. Numerical integration of the constitutive equations
We start with the elasticity eqn (46)
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(55)

where ~Il = Il,,+ I -Il" and ~Ilcr = Il:,'+ \ _Il~r are the total- and creep-strain increments, and
t1" = t1" +e : ~Il is the (known) 'elastic predictor'.

The constitutive eqns (51) and (54) for 8" and a: are integrated by using the backward
Euler method:

where ~t1 = t1,,+ I -t11i'

Summarizing, we write

(56)

(57)

G(~llcr, ~IX) == ~Ilcr -~tg(t1,,+ I -IX,,-~IX) = 0,

(
t1 -(1)

H(~Il",~IX)==~IX-~tb t1"+I-IX,,-~IX, "T~t " =0,

where

(58)

(59)

(60)

We choose ~Il" and ~IX as the primary unknowns and treat (58) and (59) as the basic
equations in which t1,,+ \ is defined by (60). The solution is obtained by using Newton's
method. The first estimate for ~Ilcr and ~IX used to start the Newton loop are obtained by
using a forward Euler scheme, i.e., (~Il")est = g(t1,,-IX,,) ~t and (~IXL, = b(t1"-IX,,,
~t1,j~t) ~t, where ~t1" = t1,,- t1,,_I'

Once ~Ilcr and ~IX are found, eqn (60) defines the stress t1,,+I, IX,,+\ = IX,,+~IX, and this
completes the integration procedure.

We conclude this section with a brief discussion of the appropriate time increment
used in the integration procedure. Let (Jmax be the maximum of the absolute values of the
stress components (i.e., (Jmax = max l(Jijl,,+ d and define

(61 )

where EL and E T are the elastic moduli defined in Section 5.1. The time increment ~t is
chosen so that the maximum difference in the creep strain increment calculated from the
creep strain rate based on the conditions at the beginning and at the end of the increment
is always less than CETOL, i.e.,

(62)

6.2. Linearization moduli
In an implicit finite element code, the overall discretized equilibrium equations are

written at the end of the increment, resulting in a set of nonlinear equations for the nodal
unknowns. If a full Newton scheme is used to solve the global nonlinear equations, one
needs to calculate the so-called 'linearization moduli' f
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(63)

For simplicity, we drop the subscript (n+ 1) with the understanding that all quantities are
evaluated at the end of the increment, unless otherwise indicated. Starting with the elasticity
eqn (55), we find

where we took into account that 0 ~B" = O(B" _B~r) = DB".
The differential OBcr is evaluated from eqns (56) and (57) as follows

Mr=~t~g:(au-a~) wheres=u-~.
uS

Dh ah
G~ = M-;:;-: (ou- G~) + ~; : au.

(;S cu

Eliminating O~ from the last two equations, we find

where

og r ( Oh)- I ( oh r!h)JD=M-;): J- J+M-;) : M:"1.-+;-;- ,
uS (;S (.S vu

(64)

(65)

(66)

(67)

(68)

J being the fourth-order identity tensor. Finally, substituting eqn (67) into (64) and solving
for GU/aB, we find

au
f =-=(J+C":Df':C" =(C"-l +0)-'.

aB
(69)

6.3. The case ofplane stress
In this section, we consider the case in which the fibers are all parallel to the X3 = 0

plane (i.e., n = nle, +nzez) and the applied loads are such that (J33 = (J31 = (J32 = O. The
stress and strain tensors are now of the form

(70)

where Greek subscripts range over the integers (1,2).
In such problems, one has to integrate the constitutive equations for given values of

the in-plane components ~81" ~822' and ~812; the out-of-plane component ~833 is not defined
kinematically, and its value is determined so that the condition (JD = 0 is met. Therefore,
some modifications to the method described in Section 6.1 are needed.

The total-strain increment is written as

(71)

where L1e = ~8'f!e,efi is the known part of ~B. The plane stress condition (J'3 = 0 requires
that
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Using the above expression for ~e33 in the elasticity egn (55), we find

(1n + 1 = i1" - t" :~l{',

where

CAe - ce -C" C" IC" d A" CAl' AA kIJkl- ilkl ij33 33k/l 3333, an (1 =(1n+ :Ll8= nown,
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(72)

(73)

(74)

In deriving egn (73), we took into account that C1ik{~[;k'; = C;'i'li~[;~lf, since ~[;';> = 0 and
Cij33 = 0,

The integration procedure becomes now identical to that described in Section 6.1, with
C and (1" replaced by t" and fTC.

7, AN EXAMPLE: A PLATE WITH A HOLE

The model developed in Section 5 is implemented in the ABAQUS general-purpose
finite element program (Hibbitt, 1984). This code provides a general interface so that a
specific constitutive model can be introduced as a 'user subroutine'. The constitutive
equations are integrated by using the method presented in Section 6.

Figure 9 shows a schematic representation of a plate with a hole. The plate is reinforced
by continuous aligned fibers in the X2 direction. Let 2w and I be the width and length of the
specimen, and 2a be the diameter ofthe hole; the geometry analyzed is such that 2w!I = 6/25
and a/w = 1/6.

The matrix material is assumed to be a Ti-6AI-4V alloy and is reinforced by continuous
aligned SiC fibers. The fiber volume fraction is 32%, i.e., f = 0.32. Typical values of the
elastic constants for the matrix and the fibers are Em = 65 GPa and Vm= 0.30 to Ti-6AI-4V
at 600)C, and El = 360 GPa and VI = 0.19 for SiC at 600T. The values of the corresponding

aapp

2w

Fig, 9, A plate with a hole. The fibers are in the x, coordinate direction.
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Fig. 10. Finite element mesh for the plate and detailed mesh near the hole.

five effective elastic constants of the composite are calculated from the formulae provided
in Section 5.1; the following values are found: EL = 160 GPa, Vr = 0.373, VI = 0.259,
GT = 34.5 GPa, and GL = 40 GPa. The effective elastic constants of the composite are also
determined from the solution of a series of unit cell problem with periodic boundary
conditions; the values found are in very good agreement with those calculated from the
formulae of Section 5.1. The creep constants of the matrix are n = 3 and B = 4.125 x 10- 13

MPa- n S-l.

A tensile stress (Japp = 250 MPa is applied in the direction of the fibers. The thickness
of the specimen is assumed to be small, so that plane stress conditions prevail. The load is
applied at time t = 0, and is kept constant. The instantaneous response of the material is
elastic and the elastic stress distribution provides the initial condition for the creep problem.

Due to the symmetries of the structure and the applied loads only one fourth of the
plate is analyzed. The finite element mesh used in the calculations is shown in Fig. 10. Four
node isoparametric elements with 2 x 2 Gauss integrations are used. The analysis is carried
out incrementally and the maximum size of the time increment is controlled by the formula
in eqn (62).

Figure 11 shows the variations of the axial stress (in and axial strain f;cc ahead of the
hole along the cross-fiber direction at time t = 0-, 1, 5, and 8 hours. The maximum values
of axial stress and strain appear at the root of the hole (point A in Fig. 9). The same
problem is analyzed in Part II, where the possibility fiber failure is examined; it is found
that the composite looses its load carrying capacity first in the neighborhood of point A,
and eventually fails along the minimum cross-section, as expected. Figure 12 shows contours
of the axial stress (i22 at time t = 0+, and 8 hours. Contours of the several transversely
isotropic invariants of the total strain e at time t = 0+ and 8 hours, are shown in Figs 13
16; the invariants plotted in these figures are (deBotton and Ponte Castaneda, 1993) :

(75)

(76)

(77)

(78)

where 0 = e2, P= 1-00 = e1el +e3e3, and the Cartesian components refer to the coordinate
system shown in Fig. 9. The axial strain en and the transverse 'dilatational' strain £p attain
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Fig. II. Variations of the normalized axial stress (J22/(J"I'f" and the axial strain 1:22 along the cross
fiber direction at time t = 0+. I, 5 and 8 hours.
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Fig. 12. Contours of axial stress (J22 at time I = 0+ and 8 hours.
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Fig. 13. Contours of strain invariant 8n at time t = 0+ and 8 hours.
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Fig. 14. Contours of strain invariant 0, at time I = 0+ and 8 hours.
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Fig. 15. Contours of strain invariant y" at time t = 0+ and 8 hours.
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Fig. 16. Contours of strain invariant YP at time t = 0+ and 8 hours.

their maximum values at point A. Figures 15 and 16 show that the longitudinal ((IJ) and
transverse (Yp) shear strains reach their maximum values on the surface of the hole; fiber
debonding is to be expected in those locations.
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